+
-
成熟大叔
温柔淑女
甜美少女
清亮青叔
呆萌萝莉
靓丽御姐
的问题,你得记一些公式,我跟你说啊,现在数院那帮教授出题不会给你出纯粹的伴随矩阵问题,一般都是跟逆矩阵结合在一起设置考点,而且这种题目有种特点,解法很多,我教你一个最取巧的解法,你只要看到伴随矩阵的问题,不管是证明题还是计算题,都从公式AA^*A^*A|A|E来着手分析。”
“有些结论是可以直接使用的,比如如果r(A)n,则r(A^*)n,如果r(A)n-1,则r(A^*)1,如果r(A)<n-1,则r(A^*)0。给你举个例子啊,设A为n阶非零矩阵,A^*是A的伴随矩阵,当A^tA^*时,证明|A|不等于零。你想想怎么带入刚才的公式?”
江晨霜眨了眨眼,突然发现宁为几句话好像就让一直困扰她的题目不太难了,想了想答道:“哦,那应该直接把A^tA^*代入到AA^*A^*A|A|E中,得到AA^*AA^t|A|E,然后在用反证法,设|A|等于零,设A的行向量为αi,这种情况下αiαi^t等于零,可得A等于零,这样就跟|A|等于零相矛盾了,所以|A|不等于零。”
宁为听了回答,赞许的看了眼身边的女孩,说道:“还说不懂,我看你挺懂的嘛,随便就找出了最简单的证明方法,那我在考你道更难的题目啊,你准备好了,我们设矩阵A……”
就这样宁为给身边的女孩出着例题,然后讲解,从简到难,从寝室走到数学研究院大门口处短短二十来分钟,江晨霜是真感觉一直挺困扰她的伴随矩阵问题似乎不成问题了,顺带着还巩固了逆矩阵跟不可逆矩阵的概念……
很清奇的体验,真的,第一次恋爱的江同学其实也不太知道其他人谈恋爱的时候是不是差不多,只是单纯觉得如果这就是恋爱的话,似乎不会耽误反而会促进学习的样子,难怪燕北大学从来不会反对学生在校园里恋爱。
等两人来到数学研究院门口,一辆黑色的奥迪,已经停在门口等着了,宁为瞅了眼牌照,正是昨天他的客户经理发给他的牌照,看了下时间,才刚刚七点二十,他跟银行那边约好的是七点半出发,看来司机也提前到了,今天所有人都很准时啊。
司机是位看上去大概三十多岁的青年师父,带着白色的手套,看到宁为带着江晨霜来到门口,立刻下了车,冲着宁为说道:“宁先生您好,我就是昨天跟您联系过的陈光明,这些天也是我为您服务,两位请上车。”
“陈师父你好,这些天辛苦你了。”宁为点了点,便拉着还在愣神的江晨霜坐到了汽车后排。
“哪来的车啊?”女孩小声问了句。
“我也不知道,银行提供的服务。你别管这个,刚才跟你讲的都懂了吗?”宁为解释了句。
“好像懂了,不过我感觉还要多做些例题巩固。”江晨霜老老实实的答道。
“嗯,如果你伴随矩阵还有问题的话,那线性相关性问题肯定也是一知半解,等等啊,陈师傅,从学校到故宫大概要多久?”
“嗯,不堵车的话大概四十分钟吧。”
“哦,那时间足够了,谢谢啊陈师父!”
得到答复的宁为转过头,继续说道:“我跟你说啊,向量组的相关或者无关性是个很抽象的概念,看到相关题目的时候你得注意有一组跟任一祖代表的不同意思,前者只要求存在,后者则要求全部,强调的是任意性,比如我给出一个条件,有向量组α1,α2……αs,恒有0α1+0α2+……+0αs0,那么向量组α1,α2……αs是否线性相关,其实问的就是除了我刚才说的情况之外,是否还能找到另外一组k1,k2……ks,使得k1a1+……成立。
“听起来很简单吧?来我再给你出个例题,设A是n阶矩阵,α是n维列向量,若A^-1α不等于零,且A^α等于零,证明向量组α,Aα,A^2α,……线性无关。”
讲题是真在讲题,唯一稍微有一点点过分的是,坐在车上给身边女生讲题的宁为已经不满足于牵着小手,而是理所当然在讲题时候伸手搂住了女孩的腰,当然嘴里是没有停的,甚至来例题都是信手拈来,虽然语速不快,但江晨霜也必须要全神贯注才能跟得上宁为讲述的节奏,事实证明人在极为专心的时候真的会忽视周遭的情况。
所以直到江同学开始思考宁为给的例题,大概有了结果想要开口时,才突然意识到自己好像已经到了宁为的怀里,这是发生了什么?
但没等她扭动身子,宁为继续说道:“还没想明白证明步骤吗?你要结合之前那些数学概念去思考问题啊。”
江同学不太淡定的答道:“想明白了……”
“想明白了你到是说啊,你不说怎么知道你想明白了?”
“就这样说啊?”江同学不太自然的扭了扭身子。
“额?有什么不对吗?这又不是什么机密问题,最简单的线代问题,你还怕司机师傅知道?学习的时候要专注、要心无旁骛、要有那种泰山崩于前而色不变的稳定心态知道吗?尤其是学习数学的时候,可能因为你一个走神漏掉一个知识点,就导致后续的问题都听不懂了。你看,你现在这样子就属于学习跟思考问题的时候不够专心,净想些乱七八糟的事情,这
