当前位置:首页 >  游戏·竞技 > 走进不科学 > 第293章 爱因斯坦已退出群聊(2/5)
听书 - 走进不科学
00:00 / 00:00

+

-

语速: 慢速 默认 快速
- 8 +
自动播放×

成熟大叔

温柔淑女

甜美少女

清亮青叔

呆萌萝莉

靓丽御姐

温馨提示:
是否自动播放到下一章节?
立即播放当前章节?
确定
确定
取消
全书进度
(共章)

第293章 爱因斯坦已退出群聊(2/5)

走进不科学  | 作者:网络收集|  2026-01-15 09:50:19 | TXT下载 | ZIP下载

分享到:
关闭

  非欧几何啊!

  高斯居然把这玩儿给了小麦???

  众所周知。

  在人类漫长的科学史上,诞生过许多影响深远的著作。

  比如东方有《周髀算经》、《九章算术》。

  比如西方有《自然哲学的数学原理》、《螺线》等等。

  而若论建立空间秩序最久远的方案之书,那么无疑要首推《几何原本》。

  这本书建立了赫赫有名的欧氏几何体系,在数学史上堪称基石一般的著作。

  欧几里得几何学在被提出后雄视数学界两千年,没有人能动摇它的权威。

  但另一方面。

  欧式几何在体系上堪称无敌,不过某些细节上却一直都颇有争议。

  比如它的第五条公理。

  这条公理的内容是这样的:

  同一平面内一条直线和另外两条直线相交,若在某一侧的两个内角的和小于两直角,则这两直线经无限延长后在这一侧相交。

  由于第五公理文字叙述冗长,不那么显而易见。

  因此一些数学家提出了一个想法:

  第五公理能不能不作为公理,而作为定理呢?

  能不能依靠其他公理来证明第五公理?

  这就是几何发展史上争论了长达两千多年的“平行线理论”的讨论。

  瑞士几何学家数学家兰贝尔特、法国著名的数学家勒让德和拉格朗日等人,都在这个问题上花费了大量的精力。

  然而遗憾的是,他们都没有成功。

  这个问题像纸片人老婆一样。

  无情地消耗着宅男们的纸巾,而不给予他们任何实质性的爱情。

  这种情况一直持续到了19世纪初,终于有个人站了出来:

  他就是俄国数学家罗巴切夫斯基。

  他的思路与前人截然不同,继承了毛熊的优良传统,大胆思索了这个问题的相反提法:

  有没有一种可能,那就是根本就不存在第五公设的证明?

  于是呢。

  他便沿着这条思路进行研究,着手寻求第五公设不可证的解答。

  他首先做的,便是对第五公设加以否定。

  也就是假设“过平面上直线外一点,至少可引两条直线与已知直线不相交”。

  然后用这个否定命题和其他公理公设组成新的公理系统,并由此展开逻辑推演。

  最终在在推演过程中,他得到了一连串古怪的数据。

  但令人惊讶的是。

  经过巴罗切夫斯基的仔细审查,却没有发现它们之间含有任何逻辑矛盾。

  于是罗巴切夫斯基大胆断言:

  这个“在结果中并不存在任何矛盾”的新公理系统,可以构成一种新的几何。

  它的逻辑完整性和严密性可以和欧几里得几何相媲美,而这个无矛盾的新几何的存在,就是对第五公设可证性的反驳。

  也就是对第五公设不可证性的逻辑证明。

  由于尚未找到新几何现实世界的原型和类比物,罗巴切夫斯基慎重地把这个新几何称之为“想象几何”。

  罗巴切夫斯基在1826年选择公开了这个理论,然后……

  他就被舆论喷成了某个霓虹人的心脏,到处都是窟窿眼儿,堪称体无完肤。

  因为这个理论实在是太挑战当时的认知了,好比后世的香蕉说自己会爆更一周一样离谱。

  直到罗巴切夫斯基去世12年……也就是1866年的时候,非欧几何才被成功翻案。

  罗巴切夫斯基的经历乍一看有些像是小麦,但实际上他比小麦要惨的多:

  小麦后来好歹还担任过卡文迪许实验室的第一任主任呢,罗巴切夫斯基却遭遇了整整三十年的多方压制。

  他虽然进入了德国科学院,但津贴只在去世后的次月以慰问金的名义收到过一次,令人唏嘘。

  而比起罗巴切夫斯基,还有一个发现非欧几何的大佬就要鸡贼的多了。

  他就是高斯。

  高斯要比罗巴切夫斯基早上许多年就发现了非欧几何,相关理论体系也比罗巴切夫斯基构筑的完善的多。

  但高斯却很清楚这个新体系会引发的冲击,于是他谨慎的思想再次占据了高点,没有选择公开自己的理论。

  直到高斯死后,这些内容才被人从手稿中发现。

  顺带一提。

  和这些手稿一起被发现的,还有十几种代数证明的方法……

  这些手稿的原本现存于哥廷根西南郊10公里的德兰斯费尔德高斯博物馆,哥廷根大学的官网则能找到扫描件下载。

  不过导致徐云心情复杂的不是高斯把手稿送给了小麦,而是这些手稿会引发的后续影响。

  先前提及过。

  这个时间线的小牛独立完成了微积分的建立,莱布尼茨失去了一项载入史册的荣誉。

  成名后的小牛作为卢卡斯教授在剑桥大学工作了数十年,因此剑桥大学在微积分方面的底蕴,自然也是全欧洲最深的。

  同时呢。

  小麦作为能够推导出麦克斯韦方程组的究极变态,数学系未来的扛把子之一,在微分拓扑流形方面的成就自然也不低。

  而后世学过大物和高数的朋友应该都知道。

  微分流形加上非欧几何,这特么的就是黎曼几何理论啊……

  别着急,这还没完呢。

  要知道。

  徐云之前在开学典礼那会儿,已经把电磁波这玩意儿给整出来了。

  加上推导的波动方程,可以说电动力学的核心差不多已经被他构筑完毕。

  更早之前,他还写信给小牛提点了绝对时空观的错误。

  哦对了。

  还有徐云在

(快捷键:←) 上一页返回目录(快捷键:Enter)下一页 (快捷键:→)
next
play
next
close
自动阅读

阅读设置

5
X
Top
关闭
手机客户端
APP下载