当前位置:首页 >  游戏·竞技 > 走进不科学 > 第306章 高斯的宝藏(中)(2/4)
听书 - 走进不科学
00:00 / 00:00

+

-

语速: 慢速 默认 快速
- 8 +
自动播放×

成熟大叔

温柔淑女

甜美少女

清亮青叔

呆萌萝莉

靓丽御姐

温馨提示:
是否自动播放到下一章节?
立即播放当前章节?
确定
确定
取消
全书进度
(共章)

第306章 高斯的宝藏(中)(2/4)

走进不科学  | 作者:网络收集|  2026-01-15 09:50:19 | TXT下载 | ZIP下载

分享到:
关闭

不少东西。

  黎曼在写给戴德金的信件中便提及过高斯书房被暴力破坏的事情。

  那些流出的手稿有些进入了收藏家的手中,2017年便有一位西班牙的收藏家将两本笔记交还给了哥廷根大学。

  这种死后不得安生的事情在科学界其实很常见,最倒霉的其实不是高斯,而是老爱:

  这位科学史上和小牛争第一争到狗脑子快被打出来的大佬,在死后七个小时便被一个叫哈维的医生偷走了真的脑子,并且切成了240块。

  直到老爱去世四十二年后,哈维才将老爱的大脑切片交给普林斯顿大学医院。

  这也是后世有些小说会调侃切片的真正根由,虽然估摸着很多写到“切片”二字的作者本人并不知道这么回事……

  想到这里。

  徐云不由幽幽叹了口气,将思绪收回到现实。

  他先是从身上取出了实验室用的手套——这年头的手套都是加了碱式碳酸铅的乳胶手套,成本相对较高,所以做无毒实验的时候基本上都是自带并且反复使用。

  戴好手套后。

  徐云便弯下身,开始翻找起了高斯的手稿。

  “高等分析随想……”

  “拓扑学中的欧拉示性数问题……”

  “复变函数论的路径释疑……”

  高斯放在皮箱里的手稿很多,名目极其复杂,不过徐云的目标却也相当明确:

  他只想要那些后世遗失或者有特殊意义的手稿原件。

  至于非欧几何这种1850年没发布、但后世已经完全形成体系的手稿,绝非他此行的目标。

  过了一会儿。

  徐云忽然眼前一亮,拿出了一卷比较靠内的手稿:

  “咦?”

  只见这份手稿的封条上,赫然写着一行字:

  《亲和数计算》。

  亲和数。

  这个词的英文名叫做friendly number,所以有时候也会被翻译成友好数或者相亲数。

  它的释意很简单:

  彼此的全部约数之和(本身除外)与另一方相等的两个正整数,比如220和284。

  举个例子。

  上过小学的朋友应该都知道。

  220的约数为:

  1、2、4、5、10、11、20、22、44、55、110,和为284;

  而284约数为:

  1、2、4、71、142,和正好为220。

  故220和284是一对亲和数。

  这个词最早出现在公元前320年,源自西方文明发源地之一的古希腊。

  当时的学术巨头毕达哥拉斯对数论的研究深不可测,他是“万物皆数”的提出者。

  他的门徒受他影响,对数的研究更是“走火入魔”,尝试从世界的任何事物中寻找数。

  结果一天。

  他的门徒突发奇想,问了毕达哥拉斯一个问题:

  老师,我结交朋友时,会存在数的关系吗?

  结果毕达哥拉斯说了一句很有名的话:

  朋友是你灵魂的倩影,要像220与284一样亲密,我中有你,你中有我。

  这句话,便是亲和数的万恶之源。

  亲和数问世以后毕教主并没有歇着,而是带领着毕氏学派乘机大肆宣扬起了“万物皆数”。

  不过很尴尬的是。

  毕教主宣传了几十年,研究了几十年,亲和数依然还是只有220和284。

  直到毕教主去世,人们对于亲和数的认知依然停留在220和284。

  而且更尴尬的是在之后几百年里,数学界依然没有找到第二对亲和数。

  所以大家开始怀疑220和284是毕教主碰巧随口说出来的两个数字。

  随着对于亲和数研究热度的减退,它就此渐渐淡出人们的视野。

  直到公元850年,阿拉伯全能王数学家塔别脱·本·科拉提出了一个想法:

  无穷的自然数中亲和数一定不止一对!

  他和以往数学家不同,他不打算去从漫无边际的自然数中筛选。

  而是从一般规律出发,试图找到亲和数的通用公式。

  这位全能王为了研究亲和数放弃了其他所有科目的研究,年仅20多岁就谢顶了。

  不过功夫不负有心人,后来他总算归纳出了一个规律:

  a3X2^(x-1)-1

  b3X2^x-1

  c9X2^(2x-1)-1。

  这里的x是大于1的自然数,若abc均为素数,那么2xab与2xc就是一堆友好数。

  比如取x2,那么a5,b11,c71。

  所以2×2×5×11220和2×2×71284为一对亲和数。

  结论一出,证明了毕教主不是信口开河,亲和数的确存在,并且可以通过计算得到。

  从这里起,故事开始有意思了起来……

  自那以后。

  数学家们不再没有头绪的寻找亲和数。

  而是一边寻找更为简单的公式,一边通过公式大量计算来寻找亲和数。

  但遗憾的是。

  在之后800多年里,数学家们不仅没有优化全能王的公式,而且一对新的亲和数都没有找到……

  这也就是说。

  在毕达哥拉斯之后2500年,没有人能够找到第二对亲和数的影子!

  这个局面一直持续到了1636年,逼王费马闪亮登上历史舞台,一举打破了2500多年的历史尴尬。

  这位“业余数学家”实在看不下去了,白天养家糊口,晚上计算亲和数,算的脑瓜子嗡嗡的。

  最终在他算的满头白发的

(快捷键:←) 上一页返回目录(快捷键:Enter)下一页 (快捷键:→)
next
play
next
close
自动阅读

阅读设置

5
X
Top
关闭
手机客户端
APP下载